Fuzzy Knowledge Representation, Learning and Optimization with Bayesian Analysis in Fuzzy Semantic Networks
نویسنده
چکیده
This paper presents a method of optimization, based on both Bayesian Analysis technical and Gallois Lattice, of a Fuzzy Semantic Networks. The technical System we use learn by interpreting an unknown word using the links created between this new word and known words. The main link is provided by the context of the query. When novice’s query is confused with an unknown verb (goal) applied to a known noun denoting either an object in the ideal user’s Network or an object in the user’s Network, the system infer that this new verb corresponds to one of the known goal. With the learning of new words in natural language as the interpretation, which was produced in agreement with the user, the system improves its representation scheme at each experiment with a new user and, in addition, takes advantage of previous discussions with users. The semantic Net of user objects thus obtained by these kinds of learning is not always optimal because some relationships between couple of user objects can be generalized and others suppressed according to values of forces that characterize them. Indeed, to simplify the obtained Net, we propose to proceed to an inductive Bayesian analysis, on the Net obtained from Gallois lattice. The objective of this analysis can be seen as an operation of filtering of the obtained descriptive graph.
منابع مشابه
Optimization of Fuzzy Semantic Networks Based on Galois Lattice and Bayesian Formalism
This paper presents a method of optimization, based on both Bayesian Analysis technical and Galois Lattice of Fuzzy Semantic Network. The technical System we use learns by interpreting an unknown word using the links created between this new word and known words. The main link is provided by the context of the query. When novice’s query is confused with an unknown verb (goal) applied to a known...
متن کاملBayesian networks for continuous values and uncertainty in the learning process
This paper proposes a method for Bayesian networks that handles uncertainty and discretization of continuous variables when learning the networks from a database of cases. The database is reorganised in a new form of representation called reduced database where data are treated as distributions on symbolic values. K e y w o r d s : Bayesian networks, uncertainty, knowledge representation, fuzzy...
متن کاملA New Algorithm for Optimization of Fuzzy Decision Tree in Data Mining
Decision-tree algorithms provide one of the most popular methodologies for symbolic knowledge acquisition. The resulting knowledge, a symbolic decision tree along with a simple inference mechanism, has been praised for comprehensibility. The most comprehensible decision trees have been designed for perfect symbolic data. Classical crisp decision trees (DT) are widely applied to classification t...
متن کاملFuzzy Knowledge Representation Based on Possibilistic and Necessary Bayesian Networks
Within the framework proposed in this paper, we address the issue of extending the certain networks to a fuzzy certain networks in order to cope with a vagueness and limitations of existing models for decision under imprecise and uncertain knowledge. This paper proposes a framework that combines two disciplines to exploit their own advantages in uncertain and imprecise knowledge representation ...
متن کاملUncertainty analysis of hierarchical granular structures for multi-granulation typical hesitant fuzzy approximation space
Hierarchical structures and uncertainty measures are two main aspects in granular computing, approximate reasoning and cognitive process. Typical hesitant fuzzy sets, as a prime extension of fuzzy sets, are more flexible to reflect the hesitance and ambiguity in knowledge representation and decision making. In this paper, we mainly investigate the hierarchical structures and uncertainty measure...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1206.1794 شماره
صفحات -
تاریخ انتشار 2012